SKU/Artículo: AMZ-B0FCDR68Z5

Advanced Python Scientific Computing: Profiling, Cython, Numba, and Distributed Analytics (Machine Learning Mastery Toolkit)

Disponibilidad:
Fuera de stock
Peso con empaque:
0.36 kg
Devolución:
No
Condición
Nuevo
Producto de:
Amazon

Sobre este producto
  • Profiling Mastery: Identify time- and memory-critical hotspots using cProfile, line_profiler, memory_profiler, and tracemalloc. Learn to interpret profiling data and target your optimization efforts where they matter most.
  • Cython Acceleration: Convert Python functions into C-level extensions. Understand setup tools, static typing, memoryviews, and interfacing with C libraries to boost loop-intensive code.
  • Numba JIT and GPU Offloading: Write familiar Python while benefiting from LLVM-based just-in-time compilation. Compare @njit and @jit, leverage prange for multicore parallelism, and deploy @cuda.jit kernels for GPU-accelerated computations.
  • Distributed Analytics with Dask and MPI4Py: Scale NumPy and Pandas patterns to clusters. Build Dask task graphs, configure schedulers, tune performance with chunking and data locality, and integrate MPI4Py for hybrid HPC workflows.
  • Modern Toolchain Integration: Port array code to CuPy, explore automatic differentiation and JIT compilation with JAX, and manage large datasets using HDF5, Zarr, and Apache Arrow.
  • Transform slow prototypes into production-ready, performance-optimized applications.
  • Gain hands-on experience with industry-standard tools for profiling, JIT compilation, and distributed computing.
  • Achieve near-C performance in Python, tap GPU power, and run analytics on clusters or in serverless environments.
  • Build resilient, reproducible workflows with best practices in environment management, testing, and CI/CD.

Producto prohibido

Este producto no está disponible

Este producto viaja de USA a tus manos en
Medios de pago Aceptamos múltiples medios de pago para tu comodidad

Compra protegida

Disfruta de una experiencia de compra segura y confiable